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A linear stability analysis is presented for the miscible interface formed by placing
a heavier fluid above a lighter one in a vertically oriented capillary tube. The
analysis is based on the three-dimensional Stokes equations, coupled to a convection–
diffusion equation for the concentration field, in cylindrical coordinates. A generalized
eigenvalue problem is formulated, whose numerical solution yields both the growth
rate and the two-dimensional eigenmodes as functions of the governing parameters
in the form of a Rayleigh number and a dimensionless interfacial thickness. The
dispersion relations show that for all values of the governing parameters the three-
dimensional mode with an azimuthal wavenumber of 1 represents the most unstable
disturbance. The stability results also indicate the existence of a critical Rayleigh
number of about 920, below which all perturbations are stable. The growth rates are
seen to reach a plateau for Rayleigh numbers in excess of 106. In order to analyse the
experimental observations by Kuang et al. (2002), which show that a small amount of
net flow can stabilize the azimuthal instability mode and maintain an axisymmetric
evolution, a base flow of Poiseuille type is included in the linear stability analysis.
Results show that a weak base flow leads to a slight reduction of the growth rates
of both axisymmetric and azimuthal modes. However, within the velocity interval
that could be analysed in the present investigation, there is no indication that the
axisymmetric mode overtakes its azimuthal counterpart.

1. Introduction
The capillary tube represents one of the fundamental configurations historically

employed in investigations of interfacial phenomena and diffusive effects in the
region of contact between two fluids. Both hydrodynamic stability problems and
displacement processes have been studied extensively in this geometry. Hales (1937)
was among the first to address the stability of an unstably stratified, variable-density
fluid mixture with a constant density gradient in a vertically oriented capillary tube,
in the absence of any net flow through the tube. He found that a stable equilibrium is
possible, as long as the density gradient does not exceed a certain critical value. Taylor
(1954) devised a simple experiment to obtain this critical gradient of density, which
he argued could be used to determine the diffusion coefficient of a fluid pair, cf. also
the recent related experimental work by Debacq et al. (2001). Wooding (1959) took
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an analytical approach to the stability problem for a constant density gradient in a
capillary tube. He observed that the three-dimensional mode β = 1, where β denotes
the azimuthal wavenumber, represents the most unstable disturbance. Batchelor &
Nitsche (1993) extended the above analyses to base states involving density profiles
that vary sinusoidally in the vertical direction or deviate from a constant value only
in a central layer of small vertical extent. They confirm that β = 1 represents the most
unstable mode for the uniform density gradient. Without proof, they assume that this
also holds for the case of sinusoidally varying density. All of the above investigations
were limited to cases in which viscosity variations are absent. To our knowledge, the
stability of the situation that can be realized most easily in an experiment, namely
that of a relatively thin, miscible interface formed by placing a heavier fluid above a
lighter one in a capillary tube, has not yet been addressed from a theoretical point of
view. This is the configuration to be analysed in the present investigation.

The presence of a net flow through the tube complicates the situation considerably.
The investigations by Taylor (1960) and Cox (1962) discussed the fractional amount
of viscous fluid left behind on the wall of a tube when it is expelled by an inviscid fluid
with which it is immiscible, as a function of a suitably defined capillary number Ca.
Density effects were deemed unimportant in these studies. Reinelt & Saffman (1985)
presented numerical calculations for this case, which show very good agreement with
the experimental observations. This classical work has recently been extended to finite
viscosity ratios in the work of Soares, Carvalho & Souza Mendes (2002). Petitjeans &
Maxworthy (1996) along with Chen & Meiburg (1996) analysed the corresponding
miscible problem both experimentally and computationally, based on the Stokes
equations, cf. also the related experiments by Scoffoni, Lajeunesse & Homsy (2000).
In these flows, a cutoff length is set by diffusive effects rather than surface tension, so
that in some sense a Péclet number Pe takes the place of Ca. The above authors also
address the role of density differences by conducting experiments and simulations
in vertical tubes. Substantial differences between the experiments and the numerical
data are observed at small values of Pe, in that a quasi-steady finger emerges for
significantly smaller values of Pe in the simulations, compared to the experiments.
This raises the question as to whether non-conventional, so-called Korteweg stresses
(Korteweg 1901; Joseph & Renardy 1992) or divergence effects can be important,
an issue that has been addressed by Chen & Meiburg (2002). A particularly striking
finding was reported in the follow-up experiments of Kuang, Maxworthy & Petitjeans
(2002). In a vertical capillary tube without net flow, these authors observe that the
sharp interface formed by placing a heavier, more viscous silicone oil above a lighter
and less viscous one leads to an interfacial instability with an azimuthal wavenumber
β = 1. However, when a small upward net flow was applied to this gravitationally
unstable base state, the interface evolved in an axisymmetric fashion, rather than
exhibiting an azimuthal instability mode. It is at present unclear whether this reflects
an effect of the net flow within the linear framework of the stability problem, or if
it represents a nonlinear effect. This is one of the questions to be addressed below.
Furthermore, it is unclear to what extent the above observation depends on the
viscosity ratio of the two fluids.

In the following, we investigate the stability of a thin miscible interface formed by
placing a heavier fluid on top of a lighter one. This Rayleigh–Taylor instability has
been studied previously in unbounded domains. For a review of that literature, see
Batchelor & Nitsche (1991). Here we will focus on the geometry of a vertical capillary
tube. The analysis will be based on the three-dimensional Stokes equations, and it
will proceed along similar lines to our recent investigation for the corresponding
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Figure 1. Sketch of the vertical capillary tube and the cylindrical coordinate system.

situation in a Hele-Shaw cell, cf. Graf, Meiburg & Härtel (2002) as well as the
related experiments and nonlinear simulations reported by Fernandez et al. (2002).
In § 2 the physical problem, along with the governing equations and their non-
dimensionalization, is presented. The linearization is described for both axisymmetric
and azimuthal perturbations, and the numerical procedure for solving the resulting
eigenvalue problem is outlined. In § 3, the results of the stability analysis will be
presented in the form of dispersion relations and associated information. Section 4
discusses the framework employed to investigate the linear stability of the interface
in the presence of a weak axial net flow. The main conclusions will be summarized
in § 5.

2. Physical problem
2.1. Governing equations

We consider the situation of a heavier fluid placed above a lighter one in a vertically
oriented capillary tube of diameter d , cf. figure 1. The two fluids are miscible in all
proportions. We assume a suitably defined Reynolds number to be small, so that their
motion is governed by the three-dimensional Stokes equations

∇ · u = 0, (2.1)

∇p = µ∇2u + ρg, (2.2)

∂c

∂t
+ u · ∇c = D∇2c. (2.3)

These equations describe the conservation of mass, momentum and species, respec-
tively. Here u represents the flow velocity, g denotes the vector of the gravitational
acceleration, which is taken to point in the −z-direction, and c indicates the concentra-
tion of the heavier fluid. The viscosity µ and the molecular diffusion coefficient D are
considered constant throughout the mixture. Note that implicitly contained in the
above set of equations is the Boussinesq approximation, which assumes that density
variations are significant in the gravitational term only. The density ρ is taken to be
a linear function of the concentration c:

ρ = ρ2 + c(ρ1 − ρ2), (2.4)

which is valid for small density variations. Here ρ1 and ρ2 represent the density
of the heavier and lighter fluids, respectively. To render the governing equations
dimensionless, we introduce a characteristic length L∗, velocity U ∗, time T ∗, pressure
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P ∗ and density difference R∗ defined as

L∗ = d, (2.5)

U ∗ =
�ρg d2

µ
, (2.6)

T ∗ =
µ

�ρg d
, (2.7)

P ∗ = �ρg d, (2.8)

R∗ = �ρ = ρ1 − ρ2. (2.9)

By using these relations in equations (2.1) to (2.3), we obtain the dimensionless set of
equations

∇ · u = 0, (2.10)

∇p = ∇2u − c∇z, (2.11)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c, (2.12)

where the Rayleigh number Ra is defined as

Ra =
�ρgd3

Dµ
. (2.13)

The Stokes equations, when formulated in cylindrical coordinates (r, θ, z), exhibit
terms of the type r−1, r−2, r−3, which lead to geometric singularities at the axis r =0.
Verzicco & Orlandi (1996) propose rewriting the governing equations by replacing
the velocity components vr , vθ and vz with qr = vrr , qθ = vθ and qz = vz, respectively.
Thus qr = 0 is by definition on the axis, which on a staggered grid avoids the problem
of the singularities. The authors also demonstrate that alternative formulations (e.g.
qθ = vθr) neither enhance the accuracy nor simplify the discretization. In terms of the
new variables qr, qθ and qz, the dimensionless continuity equation (2.10) becomes

∂qr

∂r
+

∂qθ

∂θ
+ r

∂qz

∂z
= 0. (2.14)

The non-dimensional momentum equations (2.11) follow as

r
∂p

∂r
= r

∂

∂r

(
1

r

∂qr

∂r

)
+

1

r2

∂2qr

∂θ2
+

∂2qr

∂z2
− 2

r

∂qθ

∂θ
, (2.15)

1

r

∂p

∂θ
=

∂

∂r

(
1

r

∂

∂r
(rqθ )

)
+

1

r2

∂2qθ

∂θ2
+

∂2qθ

∂z2
+

2

r3

∂qr

∂θ
, (2.16)

∂p

∂z
=

1

r

∂

∂r

(
r
∂qz

∂r

)
+

1

r2

∂2qz

∂θ2
+

∂2qz

∂z2
− c, (2.17)

and the species conservation equation (2.12) takes the form

∂c

∂t
+

qr

r

∂c

∂r
+

qθ

r

∂c

∂θ
+ qz

∂c

∂z
=

1

Ra

(
1

r

∂

∂r

(
r
∂c

∂r

)
+

1

r2

∂2c

∂θ2
+

∂2c

∂z2

)
. (2.18)

The appropriate boundary conditions will be discussed below.



Density-driven instabilities of miscible fluids in a capillary tube 103

2.2. Linearization and formulation of the eigenvalue problem

We linearize the above set of equations around a quiescent base state




qr

qθ

qz

p

c


 (r, θ, z, t) =




0
0
0
p̄

c̄


 (z) +




q ′
r

q ′
θ

q ′
z

p′

c′


 (r, θ, z, t), (2.19)

where the base concentration profile is given by

c̄ = 0.5 + 0.5 erf

(
z

δ

)
. (2.20)

The parameter δ denotes the thickness of the interfacial region. We assume that
the diffusive time scale of the base state is much larger than the characteristic time
scale of the instability growth, so that the base state can be held constant for the
purpose of evaluating the instability growth rate. For the purpose of quantifying this
assumption, we define an instantaneous characteristic time scale of the self-similar
diffusive growth of the base state in the form of δ2/D. A time scale for the growth of
the perturbation is given as σ −1, where σ is the growth rate evaluated from the linear
stability analysis. Consequently, the assumption of a quasi-steady base state is valid
provided that the dimensional quantities satisfy

σ � D

δ2
. (2.21)

In dimensionless form, this criterion becomes

σδ2 � 1

Ra
. (2.22)

The perturbations, denoted by a prime, are assumed to be of the form




q ′
r

q ′
θ

q ′
z

p′

c′


 (r, θ, z, t) =




q̂r (r, z) cos(βθ)

q̂θ (r, z) sin(βθ)

q̂z(r, z) cos(βθ)

p̂(r, z) cos(βθ)

ĉ(r, z) cos(βθ)


 eσ t , (2.23)

where the hatted quantities represent the axisymmetric eigenfunctions, and β denotes
the azimuthal wavenumber. It should be noted that, due to the underlying geometry
of the problem, only integral values of β have physical significance. By substituting
the above relations into the dimensionless conservation equations, subtracting out the
base state and linearizing, we obtain the system of linear equations

∂q̂r

∂r
+ βq̂θ + r

∂q̂z

∂z
= 0, (2.24)

r
∂p̂

∂r
= r

∂

∂r

(
1

r

∂q̂r

∂r

)
− β2

r2
q̂r +

∂2q̂r

∂z2
− 2β

r
q̂θ , (2.25)

−β

r
p̂ =

∂

∂r

(
1

r

∂

∂r
(rq̂θ )

)
− β2

r2
q̂θ +

∂2q̂θ

∂z2
− 2β

r3
q̂r , (2.26)
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Figure 2. Base concentration profile c̄(z) for different values of the interfacial thickness δ.

β l σmax

1 6 2.40421 × 10−2

8 2.40384 × 10−2

10 2.41510 × 10−2

2 6 1.75770 × 10−2

8 1.74593 × 10−2

10 1.75911 × 10−2

Table 1. The maximum eigenvalue σmax as a function of l, for different β ,
with δ = 0.1 and Ra =107.

∂p̂

∂z
=

1

r

∂

∂r

(
r
∂q̂z

∂r

)
− β2

r2
q̂z +

∂2q̂z

∂z2
− ĉ, (2.27)

σ ĉ + q̂z

∂c̄

∂z
=

1

Ra

(
1

r

∂

∂r

(
r
∂ĉ

∂r

)
− β2

r2
ĉ +

∂2ĉ

∂z2

)
, (2.28)

which represent an eigenvalue problem with p̂, q̂r , q̂θ , q̂z and ĉ as eigenfunctions and
σ as the eigenvalue of the system. There are two externally prescribed parameters in
the form of the Rayleigh number Ra and the interfacial thickness δ.

2.3. Numerical implementation of three-dimensional perturbations

The computational domain for the solution of the eigenvalue problem extends from
the axis to the outer wall in the r-direction, i.e. from 0 to 0.5, and from −l/2 to l/2
in the vertical z-direction, as shown in figure 1. The domain length l has to be chosen
sufficiently large for its effect on the numerical results for the eigenvalue and
eigenfunctions to be negligible. Test calculations were carried out in order to establish
the independence of the maximum eigenvalue σmax from l, for different values of β

and different base concentration profiles, cf. figure 2. It is found that beyond a certain
value, l no longer affects the value of σmax in a significant way, as demonstrated
for a typical parameter combination in table 1. The linear equations (2.24)–(2.28)
are discretized by second-order finite differences in both the r- and z-directions. In
order to be able to concentrate the numerical resolution in the interfacial region, a
non-equidistant grid is employed based on the mapping function given in Fletcher
(1991):

s = Pη + (1 − P )

(
1 − tanh [Q(1 − η)]

tanhQ

)
. (2.29)

We employ two separate subdomains for z = s and z = −s, respectively. Depending
on the specific value of δ, we select the parameters P and Q such that an
appropriate concentration of grid points is obtained in the interfacial region. The
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required numerical resolution is established by means of test calculations. These
show that for most cases Nr =19 points in the radial direction are sufficient to keep
the error in the eigenvalue below 0.1%. The required number of points in the z-
direction depends on the domain length and the interface thickness δ. The largest
calculations employ up to Nz = 91 and Nr =23 points, which results in a matrix of
size 5NzNr × 5NzNr = 10465 × 10465.

At the outer wall of the tube, i.e. at r = 0.5, all velocity components are assumed
to vanish, along with the normal derivative of the concentration perturbation. The
vertical domain boundaries are sufficiently far away from the interface that we can
prescribe homogeneous Dirichlet conditions for all velocity components, as well as
for the concentration perturbation. At the axis, i.e. at r = 0, qr = 0 because qr = vrr .
We do not need to specify boundary conditions for the other velocity components as
well as the concentration perturbation, at the axis, since the staggered grid implies
only grid points corresponding to radial velocity lie on the axis. For the pressure
variable, no boundary conditions are necessary, as we employ a staggered grid.

Upon discretization, the system of linear equations (2.24)–(2.28) can be written in
matrix form as

Aφ = σBφ, (2.30)

where the matrices A, B and the eigenvector φ are of the following form:


0
∂

∂r
β r

∂

∂z
0

−r
∂

∂r
M1 −2β

r
0 0

β

r
−2β

r2
M2 0 0

− ∂

∂z
0 0 M3 −I

0 0 0 −∂c̄

∂z
M4







p̂

q̂r

q̂θ

q̂z

ĉ


 = σ




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 I







p̂

q̂r

q̂θ

q̂z

ĉ


.

Here

M1 = r
∂

∂r

(
1

r

∂

∂r

)
− β2

r2
+

∂2

∂z2
, (2.31)

M2 =
∂

∂r

(
1

r

∂

∂r
r

)
− β2

r2
+

∂2

∂z2
, (2.32)

M3 =
1

r

∂

∂r

(
r

∂

∂r

)
− β2

r2
+

∂2

∂z2
, (2.33)

M4 =
1

Ra

(
1

r

∂

∂r

(
r

∂

∂r

)
− β2

r2
+

∂2

∂z2

)
. (2.34)

This system has to be solved numerically in order to determine the eigenvalue σ

along with the corresponding eigenfunctions q̂r , q̂θ , q̂z, p̂ and ĉ, as functions of the
azimuthal wavenumber β , for the two parameters characterizing the overall fluid
system and the base state, Ra and δ.

To keep the computational effort in an acceptable range the numerical eigenvalue
problem is solved iteratively for the leading eigenvalues by an Arnoldi method
(Sorensen 1992). For the computational implementation we make use of the public
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Re σmax ξ

0 7.79497 × 10−3 3.38486 × 10+07

0.001 7.79497 × 10−3 6.64375 × 10−11

0.01 7.79496 × 10−3 6.64588 × 10−11

0.1 7.79486 × 10−3 7.20705 × 10−11

Table 2. Eigenvalues and eigenfunction residuals for δ = 1, Ra=107 and β = 1 and various
values of Re. The results indicate that a value of Re= 0.001 has a negligible effect on the
eigenvalue, but leads to much better convergence of the eigenfunctions.

domain software package ARPACK (Maschhoff & Sorensen 1996). Test calculations
and comparisons with direct solvers for a system of linear equations (LAPACK)
indicate that in this way the eigenvalues can be computed to a high degree of
accuracy. However, at high Ra the corresponding eigenfunctions are not always fully
converged and the overall rate of convergence is quite slow at times. Consequently,
we follow the suggestion by Graf et al. (2002), and to accelerate the convergence and
improve the accuracy modify the original system of equations slightly to

∇ · u = 0, (2.35)

Re
∂u
∂t

+ ∇p = ∇2u − c∇z, (2.36)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c, (2.37)

where Re represents a Reynolds-number-like parameter. Test results shown in table 2
for δ = 1, β = 1, Ra = 107 and various values of Re, demonstrate that for Re =0.001 the
magnitude of the eigenvalue is essentially unaffected by Re, whereas the eigenfunctions
are much better converged than for Re= 0, as indicated by the value of the residual
ξ . Consequently, this value of Re is used in all the calculations.

2.4. Numerical implementation of axisymmetric perturbations

In order to obtain information on the stability of purely axisymmetric perturbations,
we consider the case of β = 0 separately. To avoid boundary conditions for pressure
and also to save memory by reducing the total number of variables used in the com-
putation, we can conveniently rewrite the governing equations in the streamfunction
and vorticity variables:

∇2ψ + ω = 0, (2.38)

Re
∂ω

∂t
= ∇2w +

∂c

∂r
, (2.39)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c. (2.40)

Vorticity ω and streamfunction ψ are defined, in the usual way, as

vr = −1

r

∂ψ

∂z
, vz =

1

r

∂ψ

∂r
, (2.41)

ω =
∂vr

∂z
− ∂vz

∂r
. (2.42)
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Figure 3. Example of mesh point distribution for the axisymmetric problem, with a
Chebyshev grid in the z-direction and compact finite differences in the r-direction.

We assume an axisymmetric disturbance of the form
ψ ′

ω′

c′


 (r, z, t) =


ψ̂(r, z)

ω̂(r, z)

ĉ(r, z)


 eσ t , (2.43)

where ψ̂ is set to zero on all domain boundaries; ω̂ vanishes on all boundaries except
for the outer wall, where it takes the value (∂2ψ̂/∂r2)/r . At the far-field bound-
aries the concentration perturbation is assumed to vanish, whereas along the outer
wall and the tube axis its normal derivative ∂ĉ/∂r goes to zero. A staggered grid is
not required here, due to the absence of the pressure variable, and of singularities at
the axis. Hence, a Chebyshev collocation method is used in the z-direction with two
separate sub-domains that cover the regions z � 0 and z � 0, respectively, in order
to concentrate grid points at the interface. In the radial direction a highly accurate
compact finite difference scheme of third order at the wall and up to tenth order
in the interior is used, cf. Lele (1992). An example of the mesh point distribution is
shown in figure 3.

By linearizing the system of equations (2.38)–(2.40) using (2.43), discretization leads
to an eigenvalue system of the form



M1 I 0

0 M2

∂

∂r

−1

r

∂c̄

∂z

∂

∂r
0 M3





ψ̂

ω̂

ĉ


 = σ


0 0 0

0 Re I 0
0 0 I





ψ̂

ω̂

ĉ


, (2.44)

with

M1 =
1

r

∂2

∂r2
− 1

r2

∂

∂r
+

1

r

∂2

∂z2
, (2.45)

M2 =
∂

∂r

(
1

r

∂

∂r
r

)
+

∂2

∂z2
, (2.46)

M3 =
1

Ra

(
1

r

∂

∂r

(
r

∂

∂r

)
+

∂2

∂z2

)
. (2.47)
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Figure 4. Axisymmetric perturbations: eigenvalue σ as a function of Ra, for different interface
thicknesses δ. The dashed line corresponds to extrapolated data for the step function profile.

2.5. Validation

The required numerical resolution along with the necessary vertical extent of the
computational domain is established by means of convergence studies for test cases.
In addition, the computational approach is validated by comparing the growth rates
with those obtained from fully nonlinear, three-dimensional spectral simulations of
variable-density miscible displacements in a capillary tube, cf. Wilhelm & Meiburg
(2003). For β = 0 and 1, respectively, those simulations yielded σ ≈ 0.013 and 0.0195,
for Ra = 1.35 × 105 and δ = 0.2. Our present data agree with those values to within
less than 1%. Finally, the growth rates obtained from the three-dimensional stability
calculations in the limit β → 0 are seen to agree closely with the corresponding values
obtained from the axisymmetric stability calculations. This implies that the second-
order finite difference scheme for the three-dimensional problem is adequate for the
numerical analysis of the problem at hand.

3. Results
3.1. Axisymmetric perturbations

We begin by discussing linear stability results for axisymmetric perturbations. The
leading eigenvalue σ is shown as a function of Ra for several values of the interface
thickness parameter δ in figure 4. In general, thinner interfaces and larger Ra values
are seen to be destabilizing. For Ra > 106, the growth rate is seen to asymptotically
reach a plateau, whose value depends on δ.

For each δ, a critical value Racrit can be identified, below which the base state is
stable to axisymmetric perturbations. The existence of this critical value reflects the
stabilizing influence of the outer wall. The Racrit values found here for capillary tubes
are significantly higher than those reported by Graf et al. (2002) for two-dimensional
perturbations in Hele-Shaw cells. This is to be expected, as the stabilizing influence by
the walls should be stronger in a capillary tube, where the axisymmetric perturbation
is surrounded by the solid wall on all sides. In a Hele-Shaw cell, on the other hand,
two-dimensional perturbations are affected by the walls only in the direction normal
to the gap, but not in the spanwise direction. Figure 5 depicts the critical Rayleigh
number Racrit as a function of δ. For 0.1 � δ � 2, Racrit is seen to grow approximately
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Figure 5. Axisymmetric perturbations: the critical Rayleigh number Racrit as a function of
the interfacial thickness parameter δ. The squares represent results of the stability calculations,
while the straight line is a linear regression for these data. The results indicate that below
Ra ≈ 3700, axisymmetric perturbations are stable even for a base state with a discontinuous
jump in the concentration profile.

Figure 6. Axisymmetric perturbations: eigenvalue σ as a function of δ, for Ra= 107. The
results indicate that the maximum growth rate for axisymmetric perturbations, achieved for a
base state with a discontinuous jump in the concentration profile, is approximately 0.0234.

linearly with the interface thickness. By linear regression, we obtain the relationship

Racrit = 11000 δ + 3700. (3.1)

This indicates that Rayleigh numbers below O(3700) are always stable with respect
to axisymmetric perturbations. By extrapolating the maximum growth rate, as a
function of δ for Ra = 107, to δ = 0 we find that the maximum growth rate for
axisymmetric perturbations in the presence of a step-like concentration base state
is approximately 0.0234, as shown in figure 6. Figure 7 displays the concentration
eigenfunctions associated with the largest eigenvalues, for δ = 0.1 and the two Ra
values of 5 × 103 and 107. One can clearly see a qualitative difference between the
low-Ra results, for which the concentration perturbations reach a maximum near or
at the walls, and the high-Ra counterpart which is characterized by nearly vanishing
perturbation levels at the wall. This finding is similar to the observations of Graf et al.
(2002) for the corresponding situation in a Hele-Shaw cell. Since the streamfunction
and vorticity eigenfunctions for the two Ra values are very similar to each other
(figure 8), the differences in the concentration eigenfunctions are predominantly due
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Figure 7. Axisymmetric perturbations: isocontours of the concentration eigenfunction ĉ for
δ = 0.1 and two different values of Ra: (a) 5 × 103, (b) 107.

Figure 8. Axisymmetric perturbations: streamfunction ψ̂ and vorticity ω̂ eigenfunctions as-
sociated with the largest eigenvalue for (a) Ra= 5 × 103 and (b) Ra= 107. The interfacial
thickness parameter δ = 0.1.

to the effects of the diffusive term in the concentration equation. Qualitative sketches
of nonlinear interfacial shapes corresponding to the high- and low-Ra concentration
eigenfunctions are presented in figure 9. For low Ra values, the outer fluid layer is
seen to propagate up or down the outer wall of the capillary tube, with a central finger
propagating in the opposite direction along the axis. For higher Rayleigh numbers,
we find the outer fluid layer to have its maximum propagation velocity away from
the wall. Detailed parameter studies indicate that the eigenfunctions associated with
the leading eigenvalue never give rise to more than one upward and one downward
propagating fluid layer.

3.2. Three-dimensional perturbations

In figure 10 the leading eigenvalue is plotted as a function of the wavenumber β

for several Ra values, ranging from 500 to 107, and a constant thickness of the
interface δ = 0.1. These dispersion relationships show that for small and intermediate
wavenumbers, the curves for Ra > 106 become indistinguishable, implying that a
further increase in Ra affects only the range of unstable wavenumbers and the short-
wavelength cutoff, but not the most dangerous wavenumber or its growth rate. It
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Figure 9. Axisymmetric perturbations: qualitative form of finite-amplitude fingers for
δ =0.1 and (a) Ra= 5 × 103 and (b) Ra= 107.

Figure 10. Three-dimensional perturbations: dispersion relationships for δ =0.1 and various
Ra. For comparison, the axisymmetric data are plotted as well. The growth rate for β = 1 is
seen to exceed that for β = 0 for all values of Ra.

should be noted that the data for non-integer values of β are plotted in figure 10
only in order to guide the eye, as only the integer values are of physical significance.
Figure 10 demonstrates that the azimuthal perturbation β = 1 is always more unstable
than its axisymmetric counterpart. The concentration eigenfunctions for β = 0 and 1
are shown in figure 11 for δ =0.1 and Ra= 105. The presence of only one sign in
the eigenfunction for β =1 indicates that the lighter fluid is rising in one half of the
capillary tube, with the heavier fluid sinking in the other half.

The general shape of the eigenfunctions for the dominant azimuthal perturbations
can be seen in figure 12. The three-dimensional nature of these perturbations is
clear not only from the existence of an azimuthal velocity component v̂θ , but also
from the fact that for a given β both the concentration ĉ and the vertical velocity
perturbation v̂z are of one sign only. The qualitative form of the fingers produced,
shown in figure 13, is similar to that inferred by Kuang et al. (2002), implying
that there are two fingers in the capillary tube, one ascending and the other descend-
ing. Figure 14 shows that with increasing wavenumber, the shape of the eigenfunc-
tion remains similar, except that its maximum moves towards the outer wall. For
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Figure 11. Isocontours of the concentration eigenfunction ĉ for (a) β = 0 and (b) 1,
for δ = 0.1 and Ra= 105.

Figure 12. Concentration and velocity eigenfunction contours for the most dangerous
wavenumber β = 1, at Ra= 105 and δ = 0.1.

Figure 13. Three-dimensional perturbations: qualitative form of the finite-amplitude finger
for β =1, δ = 0.1 and Ra= 107.

larger values of δ, the corresponding dispersion relationships are presented in
figure 15. We observe a general trend of decreasing growth rates and smaller cutoff
wavenumbers for increasing interface thickness. However, there is no qualitative
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Figure 14. Isocontours of the concentration eigenfunction ĉ, for different wavenumbers β:
(a) 1, (b) 2, (c) 5, (d) 8, at Ra= 105 and δ = 0.1. With increasing β , the maximum of the
isocontours moves towards the outer wall.

 

 
 
 

Figure 15. Dispersion relationships for various interface thickness values: (a) δ =0.5, (b) 1,
(c) 2; and a range of Rayleigh numbers. β = 1 represents the most amplified integer mode for
all values of δ and Ra.

change in the shape of the concentration eigenfunction ĉ with increasing thickness,
as shown in figure 16.

From the dispersion relationships shown in figures 10 and 15 we can deduce that
for all values of the interface thickness, β = 1 remains the most dangerous mode. For
this reason, we will consider this wavenumber in more detail. Figure 17 depicts the
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Figure 16. Isocontours of the concentration eigenfunction ĉ for different values of δ: (a) 0.1,
(b) 0.5, (c) 1, (d) 2, at Ra= 105 and β = 1. While the isocontours become flatter for decreasing
δ, their shapes remain qualitatively the same.

Figure 17. The critical Rayleigh number Racrit as a function of the interfacial thickness
parameter δ, for the axisymmetric mode β = 0 and the most dangerous three-dimensional
mode β = 1. For all values of δ, the axisymmetric mode is seen to have a larger value of Racrit.

critical Rayleigh number Racrit as a function of δ, for β =1 and β = 0. Similarly to
the axisymmetric case discussed above, by linear regression through the data points
we obtain the relationship for β = 1

Racrit = 1800 δ + 920. (3.2)

For all interfacial thicknesses, the value of Racrit for β = 1 is thus lower than the
corresponding value for β =0. The above relationship furthermore indicates that
Rayleigh numbers below O(920) are stable for all base concentration profiles, with
respect to any axisymmetric or three-dimensional perturbation. By extrapolating the
growth rate for β = 1 and Ra =107 to δ =0, we find that the maximum eigenvalue
for a step-like concentration base state is approximately 0.028, as shown in figure 18.
For a Hele-Shaw cell, Graf et al. (2002) reported Racrit = 50 and the maximum
eigenvalue to be 0.038. This variation can be attributed to the stabilizing influence by
the walls which is higher, for corresponding parameters, in a capillary tube than in a
Hele-Shaw cell.

It is interesting to compare the above relationship (3.2) for the present, error-
function-type base concentration profiles with the classical result by Taylor (1954)
regarding unstable density stratifications with a constant gradient dc/dz in a capillary
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Figure 18. The growth rate σ as a function of δ, for β = 0 and β = 1, with Ra= 107. This
indicates that for all values of the interface thickness, β = 1 remains more dangerous than the
axisymmetric mode.

tube. Taylor demonstrated that such profiles are stable as long as

(dc/dz)ρ0gαd4

Dµ
� 1087, (3.3)

where

ρ = ρ0(1 + αc). (3.4)

For relatively smooth base concentration profiles of the error function type, i.e.
reasonably large values of δ, the present criterion (3.2) should approach the classical
Taylor criterion (3.3). In order to check if this is the case, we rewrite (3.2) for
dimensional δ as (

d
dc

dz

)−1

× (dc/dz)ρ0gαd4

Dµ
� 1800

δ

d
+ 920. (3.5)

In the first term on the left-hand side, we approximate dc/dz with the value at z = 0:

dc

dz
(z = 0) =

1

δ
√

π
. (3.6)

For δ/d = 2, we thus obtain

(dc/dz)ρ0gαd4

Dµ
� 1275, (3.7)

which is indeed close to the relationship derived by Taylor, (3.3). The slightly higher
value compared to Taylor’s result is expected, since we based the comparison on the
largest value of the concentration gradient, rather than its average value.

The variation of the growth rate σ with Ra, for different δ and β = 1, is shown
in figure 19. While this graph has the same qualitative shape as figure 4 for the
axisymmetric case in that it reaches a plateau for large Ra, the eigenvalues are
consistently higher. Furthermore, for the same value of δ the unstable range extends
to lower values of Ra. The cutoff wavenumber βcrit is shown in figure 20 as a function
of the Rayleigh number, for various interface thickness parameters. The dashed line
suggests that in the limit of large Ra values, βcrit grows approximately in proportion
to Ra1/3. This exponent is very close to the value of 10/33 found by Graf et al. (2002)
for the corresponding Hele-Shaw problem.
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Figure 19. The growth rate σ corresponding to the most dangerous wavenumber β = 1, as a
function of Ra for different interface thicknesses. The dashed line corresponds to extrapolated
data for the step-function profile.

Figure 20. Cutoff wavenumber βcrit as a function of Ra for various δ. The dashed line
represents the power law βcrit ≈ Ra0.33.

4. Influence of net axial flow
In this section, we will set up the framework for analysing the effect of a small

net axial velocity on the linear stability of the miscible interface in the configuration
considered above. Our approach builds on the findings of Taylor (1953), who analysed
the dispersion of a passive solute in a solvent flowing slowly through a tube. For a
Poiseuille flow profile of the form

q̄z = umax(1 − 4r2/d2), (4.1)

he showed that radial flow-induced concentration variations are rendered small by
the action of molecular diffusion when

δ

umax

� d2

7.62D
. (4.2)

This can be expressed as a condition on the Péclet number:

Pe =
umaxd

D
	 7.62 δ

d
. (4.3)
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Note that Pe is related to Ra as

Pe = Ra
umax

U ∗ = Ra un (4.4)

with U ∗ as defined in (2.6). Under these circumstances, Taylor (1953) shows that the
dimensionless concentration profile of the passive scalar evolves according to

c(r, ξ ) = 0.5 + 0.5 erf

(
ξ

2
√

kt

)
+

Pe

16
√

πkt
(r2 − 2r4) exp

(
− ξ 2

4kt

)
. (4.5)

Here ξ = z − 1
2
umaxt denotes the axial coordinate in a reference frame moving with the

mean velocity 1
2
umax of the flow; k = u2

maxd/768D represents the well-known Taylor
dispersion coefficient.

In order to investigate the influence of this Poiseuille flow on the stability of the
interface, we can now set

δ =2
√

kt (4.6)

and assume a quasi-steady state δ =const., in complete correspondence to the no-flow
case analysed above. However, when interpreting the results it needs to be kept in
mind that the situation under consideration, in which the density depends on the
concentration, is clearly distinct from the case of a passive scalar analysed by Taylor
(1953). As a result, the flow is not exactly of Poiseuille type. Nevertheless, as long as
radial concentration variations remain small, the Poiseuille flow assumption should
be approximately valid.

The set of linear equations (2.24)–(2.28) now has to be modified in order to account
for the axial base flow and the radial variations in the concentration profile. After
linearization, these effects appear only in the concentration equation, which in the
moving reference frame changes to

σ ĉ +
1

r

∂ψ̂

∂r

∂c̄

∂ξ
+ q̄z

∂ĉ

∂ξ
− 1

r

∂ψ̂

∂ξ

∂c̄

∂r
=

1

Ra

(
∂2ĉ

∂r2
+

1

r

∂ĉ

∂r
+

∂2ĉ

∂ξ 2

)
(4.7)

for axisymmetric perturbations, and to

σ ĉ + q̂z

∂c̄

∂ξ
+ q̄z

∂ĉ

∂ξ
+

q̂r

r

∂c̄

∂r
=

1

Ra

(
1

r

∂

∂r

(
r
∂ĉ

∂r

)
− β2

r2
ĉ +

∂2ĉ

∂ξ 2

)
(4.8)

for the three-dimensional case. In the following, numerical stability results will be
presented for the dimensionless parameters Ra =3 × 104 and δ = 2, at various values of
un � 0.0005. In this way, Pe � 15, so that condition (4.3) is clearly satisfied. Figure 21
shows the corresponding base concentration profile. Clearly, radial concentration
variations are small.

Figure 22 displays the variation of the growth rate with the normalized velocity un

for both the axisymmetric and the β = 1 azimuthal mode. The growth rates of both
modes show a small decrease with increasing net flow. However, for the present low
flow rates there is no indication that the growth rate of the axisymmetric mode will
soon overtake that of the β = 1 mode. For reasons that are not completely understood,
we were unable to obtain fully converged eigenfunctions for flow rates much larger
than those shown in figure 22. The corresponding eigenfunctions for the β = 1 and 0
modes are shown in figures 23 and 24. For Ra = 3 × 104 and δ = 2, eigenfunctions with
no axial flow are very similar to figures 7 and 12 for the axisymmetric and azimuthal
perturbations. Comparing the corresponding figures clearly shows the convective
effect of the base flow on the concentration perturbation field.
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Figure 21. Influence of net axial flow on the interfacial stability. Base concentration profile c̄
for Ra= 3 × 104, δ = 2 and un = 0.0002.

Figure 22. Influence of net axial flow on the interfacial stability. Variation of instability
growth rates for Ra= 3 × 104, δ = 2 and various values of un, for axisymmetric perturbations
β =0, as well as for three-dimensional perturbations with β =1. The axial flow is seen to result
in a small reduction of the growth rates.

Figure 23. Influence of net axial flow on the interfacial stability. Concentration and velocity
eigenfunction contours for β = 1, at Ra=3 × 104, δ = 2 and un = 0.0002.
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Figure 24. Influence of net axial flow on the interfacial stability. Concentration, vorticity
and streamfunction eigenfunction contours for β =0, at Ra=3 × 104, δ =2 and un =0.0002.

5. Conclusions
The current investigation presents linear stability results for the miscible interface

formed by placing a heavier fluid above a lighter one in a vertically oriented capillary
tube. The analysis is based on the three-dimensional Stokes equations coupled to a
convection–diffusion equation for the concentration field in cylindrical coordinates. By
linearizing this set of equations, a generalized eigenvalue problem is formulated, whose
numerical solution yields both the growth rate and the two-dimensional eigenmodes
as functions of the dimensionless parameters characterizing the problem, namely the
Rayleigh number and the interface thickness.

The dispersion relations show that for all Ra values and interface thicknesses the
azimuthal mode β = 1 represents the most unstable disturbance. In particular, its
growth rates are consistently higher than those of the axisymmetric mode. The most
amplified mode thus corresponds to the formation of one finger of the lighter fluid
rising over one half of the tube’s cross-section, with a second finger of the heavier
fluid falling in the other half. This is in agreement with the experimental observations
of Kuang et al. (2002). The stability results furthermore indicate the existence of a
critical Rayleigh number Racrit ≈ 920, below which all perturbations are stable. For
relatively thick interfaces, the present data for Racrit are seen to approach the classical
value derived by Taylor (1954) for a uniform density gradient. For a constant interface
thickness, the growth rates reach a plateau as Ra > 106.

The experiments of Kuang et al. (2002) had shown that a small amount of net flow
through the capillary tube can stabilize the azimuthal instability mode and maintain
an axisymmetric evolution of the flow. In order to analyse the effect of a net flow
on the linear stability of the interface, we included a base flow of Poiseuille type in
our analysis. The corresponding base concentration profile was obtained following
the analysis of the convection and diffusion of a passive scalar in a capillary tube by
Taylor (1953). The stability analysis shows that a weak base flow results in a slight
reduction of the growth rates of both axisymmetric and azimuthal modes. However,
within the velocity interval for which we were able to obtain converged results there
is no indication that the axisymmetric mode will overtake its azimuthal counterpart.
Consequently, we are at present unable to state conclusively if the experimental
observations by Kuang et al. (2002) reflect the influence of the base flow on the
linear stability problem, or if they represent a nonlinear effect. In addition, it is
to be kept in mind that the assumption of a Poiseuille-type base flow is only an



120 S. H. Vanaparthy, E. Meiburg and D. Wilhelm

approximation, which requires a relatively thick interface. While it is unknown what
the initial interface thickness in the experiments was, we do know that the experiments
employed fluids of very different viscosities, an effect that has not been accounted
for in the present analysis. Clearly, further work is needed in order to unravel these
issues.
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